

Advanced SCR Control for Dynamic Ammonia Distribution

Conference on Selective Catalytic Reduction and Non-Catalytic Reduction for NOx Control

Pittsburgh, PA

October 30, 2003

Scott Boyden, Stephen Piche, Larry Czarnecki

Key Performance Indicators for the SCR ALS

Key Performance Indicators:

- NOx removal efficiency,
- Ammonia slip,
- Ammonia utilization efficiency

- Maldistribution of Inlet NOx
- Process/profile noise (within design tolerances)

- Typical SCR process control system
- Advanced process control system

The SCR Process

SCR in the field

Simulation "process" (blocks)

Benefits of using a Simulator:

- Controlled, repeatable conditions
- Unlimited "instrumentation"
- Simple re-configuration
- No impact on production/performance
- Faster execution than "real-process"

Dynamic Simulator

SCR Reaction:

- First principle steady-state model
- Kinetic equation reference: Control of Nitrogen Oxide Emission: Selective Catalytic Reduction, Clean Coal Technology, Topical Report #9, US DOE, July 1997
- Process Dynamics:
 - First-order exponential filter
 - Pure dead-time/delay blocks
 - Instrumentation lag included!
- Reactor "Squares"
 - 10x10 grid 100 squares
 - Each square modeled as an independent reactor
- Execution frequency: One "Real" second

Flue Gas "Generator"

- NOx Inlet: Bulk Value & Distribution Profile
 - Base NOx load combustion conditions,
 - Plant load,
 - Fuel/air ratio,
 - Process noise,
 - Maldistribution: Burner operation, duct work, etc.
- Flue gas velocity: Bulk Value

Flue gas water content: Bulk Value (fixed: 10%)

Inlet NOx: Factors

- Base NOx load: 400 ppm
- Plant Load:

$$NOx offset = \left(\frac{100.0 - load_{current}}{100.0}\right) * 1.25$$

• Fuel/air ratio (dynamic):

- Random Process noise:
 - Uniform distribution
 - Scaled based on load
 - Applied to:
 - Base inlet NOx
 - Each simulation square
- Maldistribution

Inlet NOx: Maldistribution

Goal: Simulate NOx load profile:

- Correlated, but random movement "Spring" for each simulation square

- Energy: Gaussian noise

Energy: Gaussian noise
$$\sum_{10}^{10} rnd() \qquad process_noise = range*(noise-0.5)$$

$$noise = \frac{n-1}{10}$$

$$process_noise = range*(noise - 0.5)$$

Correlation: algebraic relationship to other "squares"

$$InletNOx_{(x,y)} = \sum_{i=1,j=1}^{10,10} filtered_process_noise_{(i,j)} * (\chi_{(i,j)})^3$$

$$\chi_{i,j} = \frac{10 - \max(abs(x-i), abs(y-j))}{10}$$

- Fixed overlay
 - Base: No offset (prefect distribution)
 - Profiles: Fixed peak and/or dip

Instrumentation

- Flow: Fast: essentially no lag
- Composition analyzers:
 - 4 "Sample" points limited information
 - Pure dead-time:
 - Sample system transport lag
 - Analyzer cycle time
 - "Best-case": Approximately 25 30 second lag
 - Two sets of "books" in the simulator:
 - Process values
 - Instrumentation values (used by the control system)

Ammonia Injection Grid

- "Best-case":
 - Perfect tuning of grid so that NOx:NH3 ratio is the same at every point
 - Uniform NOx distribution (no offsets), and
 - Uniform ammonia distribution
 - Simulation: All offsets are zero...
- Ammonia flow controller assumed to be perfect (process value = setpoint) – with some relatively fast dynamics.

Simulator Block: SCR

- 100 reaction squares modeled independently
- Results (summarized):
 - Simulation Squares: Summary
 - Process Values (live)
 - Measurement Probes (delayed)
 - Instrumentation (from Measurement Probes)
 - 4-point overall summary
 - Left & Right sides

Results Summary						
	NOx Inlet	NH3 Inlet	Nh3N0x	NOx Re	NOx Outlet	NH3 Outlet
	ppm wet	lb/hr		%	ppm dry	ppm
Bulk	365.18	626.72	.91	91.21	35.67	.31
Simulation Squares						
Mean	354.34	6.27	.94	93.97	23.78	.47
Median	354.78	6.27	.94	93.67	24.25	.43
Std Dev	4.53	.00	.01	1.18	4.94	.10
Minimum	344.70	6.27	.91	91.41	13.38	.32
Maximum	364.36	6.27	.97	96.51	34.76	.78
Measurement Probes						
Mean	353.10	6.27	.94	94.29	22.42	.48
Median	350.92	6.27	.94	93.72	20.05	.44
Std Dev	2.83	.00	.01	.74	3.08	.06
Minimum	350.52	6.27	.93	93.33	19.61	.41
Maximum	356.81	6.27	.95	94.97	26.46	.54
Instrumentation Pro						
Mean	353.59	6.27	.94	93.46	25.71	.43
Median	351.10	6.27	.93	92.80	22.95	.38
Std Dev	3.14	.00	.01	.87	3.63	.06
Minimum	350.50	6.27	.93	92.46	21.45	.37
Maximum	357.49	6.27	.95	94.49	29.97	.50
Left Probes	353.99	6.27	.94	93.47	25.71	.43
Right Probes	353.19	6.27	.94	93.45	25.71	.42

Simulator Interface

Observation: Ammonia Slip

 "Bulk" FALSELY shows "better" performance than Simulation squares

	NOx Inlet	NH3 Inlet	Nh3NOx	NOx Re	NOx Outlet	NH3 Outlet
	ppm wet	lb/hr		%	ppm dry	ppm
Bulk	400.00	728.72	.90	89.96	44.61	.57
Simulation Squares						
Mean	399.02	7.29	.90	90.27	43.62	.68
Median	398.77	7.29	.90	90.07	43.26	.58
Std Dev	14.31	.00	.03	3.19	15.63	.29
Minimum	372.45	7.29	.85	84.45	15.01	.37
Maximum	426.34	7.29	.97	96.37	73.68	1.58

- Slip is NON-LINEAR!
 - Increased sensitivity as NH3:NOx ratio increases...

Observation: Observed KPIs are a strong function of instrumentation

- Left upper quadrant:
 - Low inlet NOx
 - High ammonia slip
- Right lower quadrant:
 - High inlet NOx
 - Low ammonia slip
- However REASONABLE
 - Bulk conditions,
 - Average

Control Performance Tests

- Series of test "runs" under controlled conditions
 - Same starting conditions
 - SCR configuration, model, and reaction constants
 - Dynamic elements
 - Fixed NOx inlet profile and noise ranges
 - Same profile of operating changes
 - Load changes
 - Fixed NOx inlet profile changes
- Process Control Systems:
 - Objectives:
 - NOx Removal Efficiency 90+%
 - Ammonia slip: Target at 2 ppm, hard constraint at 5 ppm
 - Control configurations:
 - PID typical SCR process control system
 - Multivariable control: single adjustable ammonia flow
 - Multivariable control: two adjustable ammonia flows

Performance Test: Run Profile

Time (minutes) into Run	Operating Action
0	Start of Run
10	Ramp load down at 2%/minute
11.5	Change to NOx Inlet Profile 1
12.5	Stop load ramp (95%)
60	Ramp load down at 0.5%/minute
80	Change to NOx Inlet Profile 2
100	Stop load ramp (75%)
130	Ramp load up at 1%/minute
145	Change to NOx Inlet Profile 1
155	Stop load ramp (100%)
155	Change to NOx Inlet Profile 0
180	End of Run

- "Adequate" control of NOx Removal Efficiency: Impacted by:
 - Disturbances (load changes & process noise)
 - Instrumentation delays
- No Ammonia slip control

MPC – fixed ammonia grid

NOX Removal Efficiency & Ammonia Slip

- Increased NOx Removal Efficiency
- Control of Ammonia slip

MPC – split ammonia grid

NOX Removal Efficiency & Ammonia Slip Split Grid

- Even more NOx Removal
- Better control of Ammonia slip

Control Comparison

PID

MPC yields:

removal

control

efficiency

MPC - Single Ammonia flow

MPC - Dual Ammonia flows

NOx Removal Efficiency & Ammonia Slip

ALSTOM Power & Pegasus Technologies Confidential and Proprietary Copyright 2003

Control Test Summary

MPC:

- Increased NOx —Removal
- Ammonia Slip ____Control
- Dual Ammonia flows:
 - Additional NOxRemoval
 - More balancedslip control

		PID	MPC	MPC
		Fixed Grid	Fixed Grid	Dual Grid
		w/ Noise	w/ Noise	w/ Noise
Simulation	n Squares			
N	Ox Removal Efficiency % (mean)	89.95	93.15	94.55
N	Ox Removal Efficiency % (std dev)	3.86	2.74	2.23
A	mmonia slip ppm (mean)	0.8220	1.9779	2.9588
A	mmonia slip ppm (std dev)	1.2558	1.0052	1.7657
T	otal Ammonia used (lb)	1855.05	1016 33	2002.33
T	otal NOx removed (lb)	5006.82	5156.67	5376.33
Instrumen	tation Probes			
N	Ox Removal Efficiency % (mean)	89.99	92.99	94.52
N	Ox Removal Efficiency % (std dev)	4.79	2.75	2.31
A	mmonia słip ppm (mean)	1.4860	2.5191	2.5740
A	mmonia slip ppm (std dev)	2.4682	1.1008	1.3855
Left Probe	es			
N	Ox Removal Efficiency % (mean)	88.16	91.34	94.57
A	mmonia slip ppm (mean)	0.3079	1.7614	2.3994
-				
Right Prol	oes			
\square N	Ox Removal Efficiency % (mean)	91.83	94.66	94.48
	mmonia slip ppm (mean)	2.6641	3.2762	2.6905

Conclusions: Impact on KPIs:

- Process Challenges:
 - Maldistribution of inlet NOx
 - Process Noise
- Improvements:
 - Additional analyzers and control valves
 - Advanced Process Control techniques:
 - Increase flexibility
 - Improve performance
 - Increased NOx removal,
 - Controlled ammonia slip

Acknowledgements

Thank You:

Dr. Karlene Hoo, Texas Tech University, Chemical Engineering

Bibliography/References:

- Simple Design of Monolith Reactor for Selective Catalytic Reduction of NO for Power Plant Emission Control, Buzanowski & Yang, Ind. Eng. Chem. Res. 1990, 29
- Optimizing SCR Catalyst Design and Performance for Coal-Fired Boilers, Pitchard, Kaneko, Suyama, EPA/EPRI Stationary Combustion NOx Control Symposium, 1995
- Improved SCR Control to Reduce Ammonia Slip, Johnson, Zammit, & Engelmeyer, ADA-ES Publication No. 99004
- Control of Nitrogen Oxide Emissions: Selective Catalytic Reduction (SCR), Clean Coal Technology, Topical Report Number 9, DOE & Southern Company, 1997
- Industrial NOx Control: Selective Catalytic and Non-Catalytic Reduction of NOx, Environex Short Course Notes, Dr. E. Robert Becker, June 1994.

Contact Information

Scott A. Boyden

ALSTOM Power, Environment Control Systems, 1409 Centerpoint Blvd., Knoxville, TN 37932 scott.boyden@power.alstom.com Telephone: 865.670.4497; Fax: 865.694.5201

Stephen Piche, PhD

Pegasus Technologies, 8200 North Mopac, Suite 230, Austin, TX 78758 spiche@pegasustec.com Telephone: 512.241.3080; Fax: 512.241.3085

Larry Czarnecki

ALSTOM Power, Environment Control Systems, 1409 Centerpoint Blvd., Knoxville, TN 37932 larry.czarnecki@power.alstom.com Telephone: 865.670.4446; Fax: 865.694.5201

